几种保存Hive查询结果的方法

2025-11-13 01:55:07

很多时候,我们需要将Hive的查询(select)结果保存起来,方便进一步处理或查看。 在Hive里面提供了不同的方式来保存查询结果,在这里做下总结:

一、保存结果到本地

方法1:调用hive标准输出,将查询结果写到指定的文件中

这个方法最为常见,笔者也经常使用。sql的查询结果将直接保存到/tmp/out.txt中

$ hive -e "select user, login_timestamp from user_login" > /tmp/out.txt

当然我们也可以查询保存到某个文件file.sql中,按下面的方式执行查询,并保存结果

$ hive -f file.sql > /tmp/out.txt

下面是file.sql的内容:

$ cat file.sql

select user, login_timestamp from user_login

hive客户的的详细使用方法可以参考hive的官方文档《Hive Batch Mode Commands》

hive -e '' executes the query string.

hive -f executes one or more SQL queries from a file.

方法2:使用INSERT OVERWRITE LOCAL DIRECTORY结果到本地

hive> insert overwrite local directory "/tmp/out/"

> select user, login_time from user_login;

上面的命令会将select user, login_time from user_login的查询结果保存到/tmp/out/本地目录下。

我们查看一下/tmp/out/目录下的文件,发现命令执行后,多了两个文件:

$ find /tmp/out/ -type f

/tmp/out/.000000_0.crc

/tmp/out/000000_0

这两个文件存放的内容不一样,其中000000_0存放查询的结果,带有crc后缀的存放那个文件的crc32校验。

用vim打开查看下000000_0的内容:

vim /tmp/out/000000_0

1 user_1^A20140701

2 user_2^A20140701

3 user_2^A20140701

可以看到,导出的查询结果字段之间是用^A(Ctrl+A)作为分割符,行与行之间用\n作为分割。

默认的字段分割符有时候可能不太方便,幸好Hive提供了修改分割符号的方法,我们只要在导出时指定就可以了:

hive> insert overwrite local directory "/tmp/out/"

> row format delimited fields terminated by "\t"

> select user, login_time from user_login;

$ vim /tmp/out/000000_0

1 user_1 20140701

2 user_2 20140701

3 user_2 20140701

可以看到字段分割符已经变成了tab(人眼看起来更舒服^-^)。

同样,我们也可以指定复杂类型(collection、map)的输出格式

更多关于INSERT OVERWRITE LOCAL DIRECTORY的语法,可以参考HIVE的官方文档《Writing data into the filesystem from queries》。

Standard syntax:

INSERT OVERWRITE [LOCAL] DIRECTORY directory1

[ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0)

SELECT ... FROM ...

Hive extension (multiple inserts):

FROM from_statement

INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1

[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ...

row_format

: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]

[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

[NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)

二、保存结果到hdfs

保存查询结果到hdfs很简单,使用INSERT OVERWRITE DIRECTORY就可以完成操作:

hive> insert overwrite directory "/tmp/out/"

> row format delimited fields terminated by "\t"

> select user, login_time from user_login;

需要注意的是,跟保存到本地文件系统的差别是,保存到hdfs时命令不需要指定LOCAL项

更多关于INSERT OVERWRITE DIRECTORY的语法,可以参考HIVE的官方文档《

Writing data into the filesystem from queries

》。

三、保存结果到HIVE表

方法1、已经建好结果表,使用INSERT OVERWRITE TABLE以覆盖方式写入结果表

如果结果表已经建好,可以使用INSERT OVERWRITE TABLE将结果写入结果表:

hive> desc query_result;

OK

user string,

login_time bigint

hive> insert overwrite table query_result

> select user, login_time from user_login;

hive> select * from query_result;

OK

user_1 20140701

user_2 20140701

user_3 20140701

当然,HIVE也提供了追加方式INSERT TABLE,可以在原有数据后面加上新的查询结果。在上面这个例子基础上,我们再追加一个查询结果:

hive> insert into table query_result

> select * from query_result;

hive> select * from query_result;

OK

user_1 20140701

user_2 20140701

user_3 20140701

user_1 20140701

user_2 20140701

user_3 20140701注意标红的部分,使用INSERT TABLE后,query_result增加了三行数据

更多关于INSERT OVERWRITE TABLE的语法,可以参考HIVE官方文档《Inserting data into Hive Tables from queries》

Standard syntax:

INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;

INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;

Hive extension (multiple inserts):

FROM from_statement

INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1

[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2]

[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;

FROM from_statement

INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1

[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2]

[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] ...;

Hive extension (dynamic partition inserts):

INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;

INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;

方法2、如果需要新建一个表,用于存放查询结果,可以使用CREATE TABLE AS SELECT语法

hive> create table query_result

> as

> select user, login_time from user_login;

hive> select * from query_result;

OK

user_1 20140701

user_2 20140701

user_3 20140701更多关于CREATE TABLE AS SELECT的语法,可以参考HIVE官方文档《

Create Table As Select (CTAS)》

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name (Note: TEMPORARY available starting with Hive 0.14.0)

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

[SKEWED BY (col_name, col_name, ...) ON ([(col_value, col_value, ...), ...|col_value, col_value, ...])

[STORED AS DIRECTORIES] (Note: Only available starting with Hive 0.10.0)]

[

[ROW FORMAT row_format] [STORED AS file_format]

| STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] (Note: Only available starting with Hive 0.6.0)

]

[LOCATION hdfs_path]

[TBLPROPERTIES (property_name=property_value, ...)] (Note: Only available starting with Hive 0.6.0)

[AS select_statement] (Note: Only available starting with Hive 0.5.0, and not supported when creating external tables.)

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name

LIKE existing_table_or_view_name

[LOCATION hdfs_path]

data_type

: primitive_type

| array_type

| map_type

| struct_type

| union_type (Note: Only available starting with Hive 0.7.0)

primitive_type

: TINYINT

| SMALLINT

| INT

| BIGINT

| BOOLEAN

| FLOAT

| DOUBLE

| STRING

| BINARY (Note: Only available starting with Hive 0.8.0)

| TIMESTAMP (Note: Only available starting with Hive 0.8.0)

| DECIMAL (Note: Only available starting with Hive 0.11.0)

| DECIMAL(precision, scale) (Note: Only available starting with Hive 0.13.0)

| VARCHAR (Note: Only available starting with Hive 0.12.0)

| CHAR (Note: Only available starting with Hive 0.13.0)

array_type

: ARRAY < data_type >

map_type

: MAP < primitive_type, data_type >

struct_type

: STRUCT < col_name : data_type [COMMENT col_comment], ...>

union_type

: UNIONTYPE < data_type, data_type, ... > (Note: Only available starting with Hive 0.7.0)

row_format

: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]

[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

[NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)

| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

file_format:

: SEQUENCEFILE

| TEXTFILE

| RCFILE (Note: Only available starting with Hive 0.6.0)

| ORC (Note: Only available starting with Hive 0.11.0)

| AVRO (Note: Only available starting with Hive 0.14.0)

| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname

四、使用hdfs直接导出表

Hive是构建在hdfs上的,因此,我们可以使用hdfs的命令hadoop dfs -get直接导出表。

首先、我们先找到要导出的表存放到哪个目录下:

hive> show create table user_login;

OK

CREATE TABLE `user_login`(

`user` string,

`login_time` bigint)

ROW FORMAT SERDE

'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'

STORED AS INPUTFORMAT

'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

'file:/user/hive/warehouse/test.db/user_login'

TBLPROPERTIES (

'totalSize'='160',

'numRows'='10',

'rawDataSize'='150',

'COLUMN_STATS_ACCURATE'='true',

'numFiles'='1',

'transient_lastDdlTime'='1411544983')

Time taken: 0.174 seconds, Fetched: 18 row(s)可以看到,user_login表存放到在file:/user/hive/warehouse/test.db/user_login。

接下来,直接利用hadoop dfs -get导出到本地:

hadoop dfs -get file:/user/hive/warehouse/test.db/user_login /tmp/out/更多关于hadoop dfs -get命令,可以参考hadoop dfs命令界面文档《

File System Shell》

Copyright © 2022 世界杯奖杯_男足世界杯预选赛 - cbatop.com All Rights Reserved.